
2/16/2012

1

Symbian Platform Overview

Operating System?

 Software Program—Similar in this Sense

to Other Programs

 Resource Encapsulation—Lens through

which Users and Applications View

System Resources like Hard disk, DVD

drives, Networks.

2/16/2012

2

Operating System?

 Binds Hardware and Software Together

Software Applications

System Hardware

Operating System

Operating System is Essential

Symbian OS—Overview

 Designed with
Smartphones as the Target
Platform in Mind

 Multitasking and
Multithreading Supported

 Symbian OS Kernel is
Microkernel

 Mobile Phone
Manufacturers Buy
Licenses of Symbian

Servers

System Hardware

Kernel

User Applications

2/16/2012

3

Symbian OS—Layered Model

 Symbian OS is Structured in Layers

 Layers are Decomposed in Blocks and Sub-
blocks

 Blocks and Sub-blocks are Decomposed in
Components or Collection of Components

 Layers are Highest Level of Abstractions

 Components are Lowest Level of
Abstractions

 Layers and Blocks are Logical Concepts

 Components are Physical Objects (Software
Code)

Symbian OS—Layered Model

 Layers

◦ Each layer abstracts the functionality of the layer beneath and provides
services to the layer above

◦ Examples
 OS Services Layer

 UI Framework Layer

 Blocks

◦ A block or sub-block roughly corresponds to a “Technology Domain”

◦ Examples:
 Telephony Services

 Network Services

 Components

◦ Components are the basic entities of the model

◦ Common, Optional and Replaceable functionality is defined at
Component Level

2/16/2012

4

Symbian OS—Layered Model

 Symbian OS is Shipped in Headless Configuration
◦ Minimal User Interface

◦ Not Production Quality User Interface

 Mobile Phone Manufacturers Either
◦ Develop their Own Production Quality User Interface or

◦ License a Suitable User Interface

 Production Quality User Interfaces Already Developed:
◦ S60 (Series 60)—Developed and Licensed by Nokia

◦ UIQ—Developed and Licensed by UIQ Technology

◦ MOAP (Mobile Oriented Application Platform)—Developed by
FOMA (Freedom of Mobile Access) Consortium in Japan

◦ Series 80 and 90—Developed by Nokia but not Licensed to
Others

Symbian OS—Layered Architecture

Kernel Services and Hardware Interface

Base Services Layer

OS Services Layer

Application Services Layer

Messaging, Browsing, App. Framework, Data Sync etc.

UI Framework Layer

S60 UIQ

CONE

Generic OS

Services

Communication Services

Telephony

Services

Short Link

Services

Networking

Services

Multimedia

& Graphics

Services

Connectivity

Services

FEP BaseUikon

Java ME

2/16/2012

5

Symbian Layers

 UI Framework Layer

 Application Services Layer

 OS Services Layer

 Base Services Layer

 Kernel Services & Hardware Interface

Layer

(Book: Pg 14-15)

Symbian OS—Key Design Patterns

Localization Of Mobile Platforms : Pg 15

2/16/2012

6

References

 The Symbian OS Architecture

Sourcebook by Ben Morris

 Smartphone Operating System Concepts

with Symbian OS by Michael J. Jipping

Symbian: Application Design and

Architecture
(S60 Perspective)

2/16/2012

7

Application Design: Typically MVC

Pattern

 Model View Controller Architecture

Model (the Document—CEikDocument)

 Contains and Manipulates Data of the Application

 View (Application View—CCoeControl)

 Displays Application State Based on Model Data

 Receives User Input

 Notifies Controller of Relevant Events

Controller (Application UI Controller—
CEikAppUI)

 Handles Application Events

 Interacts with Model

 Selects the View to be Displayed

Symbian Application Framework

 UIKON (Previously Called EIKON)

◦ Main Component of “Application Framework”

◦ Allows other GUI Frameworks to Run on Top of
Symbian OS

 S60

 UIQ

 UIKON (Sub)Frameworks

◦ CONE (Control Environment)

 Framework for Graphical User Interface

◦ APPARC (Application Architecture)

 Framework for Applications and Application Data

2/16/2012

8

S60 and UIQ Platforms

 Extend the UIKON Framework by Adding

Libraries Appropriate for each of Them

 S60 Library: Avkon (Class Prefix: CAkn)

 UIQ Library: Qikon (Class Prefix: CQik)

Application Components

 Application

 Document

 AppUI

 View

2/16/2012

9

Application Structure Overview in

S60

CApaApplicationCApaDocument CCoeAppUi CCoeControl

CEikApplication CEikDocument CEikAppUi

CAknApplicationCAknDocument CAknAppUi

CAknAppUiBase

CAknView

CAknViewAppUi

CMyApplication CMyDocument CMyAppUi CMyView CMyContainer
Sy

m
b
ia

n
 O

S
Se

ri
e
s

6
0

M
yA

p
p

Application Structure Overview in UIQ

CApaApplicationCApaDocument CCoeAppUi MCoeView

CEikApplicationCEikDocument CEikAppUi

CQikApplicationCQikDocument CQikAppUi

CQikContainer

CMyApplicationCMyDocument CMyAppUi CMyView

Sy
m

b
ia

n
 O

S
U

IQ
M

yA
p
p

2/16/2012

10

Application Entry Point

 Every Symbian Application must

Implement Two Functions that are Called

by the Framework to Launch the

Application

LOCAL_C CApaApplication* NewApplication()

{

return new CMyApplication;

}

GLDEF_C TInt E32Main()

{

return EikStart::RunApplication(NewApplication);

}

Resources

 Resource Files are Used to Define:

◦ User Interface Components

◦ Visible Text

2/16/2012

11

Resource Files

 Resource Files Contain:

◦ GUI Element Definitions (Menus, Dialogs etc.)

◦ Strings Needed by Application at Runtime

 Advantages

◦ Make Source Code Shorter and Simpler

◦ Save Memory because Text is Loaded only

when Needed

◦ Make Localization to Different Languages

Easier

Resource File Structure

 Data Types

◦ BYTE, WORD(2-bytes), LONG(4-bytes),

DOUBLE(8-bytes)

◦ LTEXT(A Unicode String with Defined

Length)

◦ BUF (A Unicode String)

◦ LINK, LLINK(ID of Another Resource)

2/16/2012

12

Resource File Structure

 Resource File Statement Types

◦ NAME

◦ STRUCT: Named Structure for Building

Aggregate Resources

◦ RESOURCE: Defines a Resource

◦ ENUM/enum: Defines an Enumeration (Similar

to C)

Resource File Structure

 STRUCT Statment

◦ STRUCT Statements are Placed in Files with

.rh (Resource Header) Extension

STRUCT DIALOG

{

LONG flags=0;

LTEXT title="";

LLINK pages=0;

LLINK buttons=0;

STRUCT items[]; // an array

LLINK form=0;

}

2/16/2012

13

Resource File Structure

 RESOURCE Statement

RESOURCE DIALOG r messages_dialog

{

title = "Title text";

flags = EAknDialogSelectionList;

buttons = R_AVKON_SOFTKEYS_OK_CANCEL;

items =

{

DLG_LINE

{

type = EAknCtSingleListBox;

id = EListControl;

control = LISTBOX

{

flags = EAknListBoxSelectionList;

array_id = r_message_list;

};

}

};

}

Resource Files: Bitmaps and Icons

 Application Icons are Stored in Bitmaps

 In Symbian, Multiple Bitmap Files are

Stored in a Single File Called Multi Bitmap

 Bitmap Resources are Structure in

Following Two Files

◦ MBM (Multi Bitmap File)

◦ MBG (Contains an ID for Each Bitmap in

MBM)

2/16/2012

14

Registration

 Applications are Required to be

Registered with Underlying Platform

 File : <application_name>_reg.rss

Contains Registration Information

◦ UID of the Application

◦ Name of Application Executable (without

extension)

◦ Application Properties (embedibility, hidden)

Localization

 Localization Files Contain “Local Language

Strings”

 One Localization File is Produced for

Each Language

 File : <application_name>.rls Contains

Strings to be Localized

2/16/2012

15

Project Specification File (MMP)

TARGET MyApp.exe

TARGETTYPE exe

UID 0x0100039CE

0xE3AA6613
SOURCEPATH ..\src

SOURCE MyApplication.cpp

SOURCE MyAppView.cpp

SOURCE MyAppUi.cpp

SOURCE MyDocument.cpp

SOURCEPATH ..\data

START RESOURCE My.rss

HEADER

TARGETPATH resource\apps

END //RESOURCE

START RESOURCE My_reg.rss

TARGETPATH \private\10003a3f\apps

END //RESOURCE

USERINCLUDE ..\inc

SYSTEMINCLUDE \epoc32\include

LIBRARY euser.lib

LIBRARY apparc.lib

LIBRARY cone.lib

LIBRARY eikcore.lib

LIBRARY avkon.lib

LANG 01

VENDORID 0
SECUREID 0xEA7408AF

CAPABILITY ReadUserData

START BITMAP MyApp.mbm

HEADER

TARGETPATH \Resources\Apps

SOURCEPATH ..\images

SOURCE c24 image1.bmp

SOURCE c8 images2.bmp

END

Project Specification File

 UID Comprises 3 Components:

◦ UID1: Same for All Binary Files and Automatically
Supplied

◦ UID2: Indicates the Type of Executable
(0x0100039CE for Applications)

◦ UID3: Uniquely Identifies the Application

 SECUREID

◦ By Default Same as UID3

 CAPABILITY

◦ Specifying the APIs that Application want to
Access

2/16/2012

16

Application Resource Files

File Name Description

AppName.rss Application‟s Resource Script

AppName_reg.rss Application‟s Registration Information

AppName.rls or

AppName.loc

Application‟s Localizable Strings

AppName.rsg Generated Header Containing Symbolic Resource IDs

AppName.hrh Enumerated Constants for Application‟s Commands

AppName.rsc Generated Compiled Resource File

Application Architecture

Possibilities

2/16/2012

17

Traditional Symbian Control Based

Architecture
M

yA
p
p

CApaApplicationCApaDocumentCCoeAppUiCCoeControl

CEikApplicationCEikDocumentCEikAppUi

CAknApplicationCAknDocumentCAknAppUi

CAknAppUiBase

Sym
b
ian

 O
S

Se
rie

s 6
0

CMyApplicationCMyDocumentCMyAppUiCContainer1CContainer2…

Traditional Symbian Control Based Architecture

 Localization of Mobile Platforms (Pg 45)

2/16/2012

18

Dialog Based Architecture

CApaApplicationCApaDocumentCCoeAppUiCCoeControl

CEikApplicationCEikDocumentCEikAppUi

CAknApplicationCAknDocumentCAknAppUi

CAknAppUiBase

CMyApplicationCMyDocumentCMyAppUiCMyDialog

Sym
b
ian

 O
S

Se
rie

s 6
0

M
yA

p
p

CAknDialog

CAEikBorderedControl

CAEikDialog

Dialog Based Architecture

 Localization of Mobile Platforms (Pg 45)

2/16/2012

19

View Switching Architecture

CApaApplicationCApaDocumentCCoeAppUiCCoeControl

CEikApplicationCEikDocumentCEikAppUi

CAknApplicationCAknDocumentCAknAppUi

CAknAppUiBase

CAknView

CAknViewAppUi

CMyApplicationCMyDocumentCMyAppUiCMyView…CContainer….

Sym
b
ian

 O
S

Se
rie

s 6
0

M
yA

p
p

MCoeView

References

 Symbian OS C++ for Mobile Phones by Richard
Harrison and Mark Shackman

 S60 Programming by Paul Coulton and Reuben
Edwards

 Developing Software for Symbian OS by Steve
Babin

 The Accredited Symbian Developer Primer by
Mark Jacobs and Jo Stichbury

 Mobile computing : technology, applications, and
service creation by Asoke K. Talukder, Roopa R.
Yavagal

2/16/2012

20

Symbian: Application

Development Concepts

Class Naming Conventions
 Class Names

◦ Prefix+Class Name+Suffix

 C Classes (C is Prefix in Class Name)
◦ Prefix „C‟ Stands for „Cleanup‟

◦ Derived Directly or Indirectly from CBase

◦ Should be Constructed on Heap and Require Cleanup

◦ Should Not be Constructed on Stack, Use Private/Protected
Constructor to Prevent this

◦ A Class can Only Inherit from a Single C Class

◦ Example: CArray

 T Classes (T is Prefix in Class Name)
◦ Also Called Data Type Classes

◦ Encapsulates a Value of Specific Type e.g. TChar

◦ Generally Do Not Use Dynamic Data i.e. Created on Stack but May
also Use Heap if Required

2/16/2012

21

Class Naming Conventions
 R Classes (R is Prefix in Class Name)

◦ Also Called Resource („R‟) Classes

◦ Owns a Client Side Handle to a Resource, Resource is Actually Owned by a
Symbian OS Server

◦ Can be Instantiated on Heap or Stack

◦ Example: RFile

 M Classes (M is Prefix in Class Name)

◦ Also Called Interface Classes

◦ Equivalent to an Abstract Class (Contains Pure Virtual Functions)

◦ Used to Define Callback Interfaces

◦ A Class can Inherit from Multiple M Classes

 Static Classes (No Prefix Attached to Static Classes)

◦ Contains Only Static Functions

◦ Cannot be Instantiated into an Object

Symbian Data Types (e32defs.h)

Data Types Symbian OS

Integer TInt, TInt64, TInt32, TInt16, TInt8

Unsigned

Integer

TUint, TUint32, TUint16, TUint8

Float TReal, Treal64, Treal32

Character TText, TText16, TText8, TChar

Boolean TBool

void* TAny*, (Can Point to a Function as

Well)

2/16/2012

22

Exception Handling

 Standard C++ Exception Handling in

Symbian OS v9 (try/catch mechanism)

 Exceptions for Previous Symbian OS

(before OS v9) are “Leaves”

◦ Leaves are Alternative to C++ Exceptions

Exception Handling

 Exceptions or Leaves

◦ Runtime Errors that are not Programmer‟s Fault

◦ Examples: Lack of Memory, Inability to Open

Network Connection

 Panic

◦ A Programming Error

◦ Generally, an Application is Terminated in Case of

Panic

◦ Panics Cannot be Caught and Handled

◦ Examples: Out of Bounds Array

2/16/2012

23

Exception Handling: Leaves

 A Leave

◦ Suspends Code Execution at the Point where Leave Occurs

◦ Resumes Execution where Leave is “Trapped”

 Leaves May Occur while Performing Operations that
May not Succeed

◦ Allocation of Memory

◦ File Creation

 Traps are used to Catch Leaves and Allow them to be
Handled

 Functions that May Leave have “L” as Suffix in their
Name

Why Do Leaves Occur?

 Calling a Leaving Function

 Use of Overloaded new (Eleave)

Operator when Memory Allocation Fails

 Use of Explicit Leave [Similar to C++

Throw]

◦ User::Leave()

◦ User::LeaveIfError(TInt)

◦ User::LeaveNoMemory()

◦ User::LeaveIfNull()

2/16/2012

24

How Leaves are Trapped?

 If a Function may Leave, it is Called Like

This

◦ TRAPD(error, FunctionMayLeaveL());
 OR

◦ Tint error;

◦ TRAP(error, FunctionMayLeaveL());

Cleanup Stack

 Cleanup Stack is Crucial to Symbian

Memory Management

 Used to Ensure that if a Leave Occurs,

there are No Memory Leaks

 Cleanup Stack is Used to Store Pointers

that may Become Orphaned if a Leave

Occurs

2/16/2012

25

Cleanup Stack Rules

 Any Locally Scoped Pointer to a Heap-

Allocated Object must be Pushed onto

the Cleanup Stack if there is a Risk of a

Leave Occurring and there is no other

Reference to the Object Elsewhere

 Instance Data (data owned by an instance

of a class) Must Never be Pushed onto

the Cleanup Stack

Cleanup Stack Functions

 To Push a Pointer on Cleanup Stack

◦ CleanupStack::PushL(aPointer)

 To Pop a Pointer from Cleanup Stack

◦ CleanupStack::Pop(aPointer)

 To Pop Multiple Items

◦ CleanupStack::Pop(aCount,
aPointerToLastExpectedItem)

 To Pop and Destroy

◦ CleanupStack::PopAndDestroy(aCount,
aPointerToLastExpectedItem)

2/16/2012

26

2-Phase Object Construction

 Object Construction Steps on Heap

◦ Step-1: Allocate Required Memory on Heap

◦ Step-2: Execute Constructor of the Allocated

Object

 What if Step-1 Succeed, and Step-2 Fails?

◦ Allocated Memory will be Orphaned

 Solution

◦ Perform Construction of Complex Objects in

Two Phases

2-Phase Object Construction

 Make All Constructors Private or Protected

 Provide Static Factory Function(s) to Create
Objects in Following Steps:

◦ Allocate Memory on Heap Using Almost an
Empty Constructor i.e. a Constructor that
Cannot Leave

◦ Push the Allocated Object Pointer on Cleanup
Stack

◦ Perform Construction of the Object Data

◦ Pop the Allocated Object Pointer from Cleanup
Stack

2/16/2012

27

2-Phase Object Construction

 Tips

◦ Constructors and Destructors Must Never Leave

◦ Destructors Must Never Assume that

Construction was Done in Full

2-Phase Object Construction Mechanism

 new: Almost Never Used. Used when Constructing a New
Instance of an Application

 new (ELeave): Used when Constructing a Heap-
Allocated Instance of a Class

◦ NewL(): Used when Constructing a Heap-Allocated Instance of a
Compound Class [Cleanup from Cleanup Stack is Not Needed]

◦ Instance is Either Directly Assigned to Member Pointer of
Another Class Object OR

◦ There is No Danger of a Leave before the Object is Deleted

◦ NewLC(): Used when Constructing a Heap-Allocated Instance of a
Compound Class [Cleanup from CleanupStack is Needed]

◦ Instance is Assigned to a Locally Scoped Pointer and there is a
Danger of a Leave before the Object is Deleted

2/16/2012

28

References

 Mobile computing : technology, applications, and service

creation by Asoke K. Talukder, Roopa R. Yavagal

 S60 Programming by Paul Coulton and Reuben Edwards

 Developing Software for Symbian OS by Steve Babin

 The Accredited Symbian Developer Primer by Mark

Jacobs and Jo Stichbury

 Developing Series 60 Applications: A Guide for Symbian

OS C++ Developers by Leigh Edwards

 http://www.symbian.com

 http://www.forum.nokia.com

Symbian: Application

Development Concepts

http://www.symbian.com/
http://www.forum.nokia.com/

2/16/2012

29

Descriptors

 Descriptors in Symbian OS are Similar to
Strings

 May Contain Text and Binary Data

 TPtr8—8 bit Characters—Narrow
Descriptors

 TPtr16—16 bit Characters—Wide
(Unicode) Descriptors

 Descriptors Can be

◦ Constant (Contents are Constant)

◦ Modifiable (Contents are Modifiable)

Descriptors

 Descriptors have an iLength Member that
Stores the Current Length of the
Descriptor

 Descriptors can Work without Null
Termination

 Modifiable Descriptors also have an
iMaxLength Member

 An Attempt to Increase the Length of the
Descriptor beyond the Maximum Length
will Result in an Immediate Panic

2/16/2012

30

Pointer Descriptors

 Can Point to Text on the Heap, or Stack

 Constant: TPtrC

 Modifiable: TPtr

6 0x123456 H E L L O !

6 10 0x23456
7

H E L L O !

Length Pointer

Length

Max

Lengt

h

Stack Based Buffer Descriptors

 Useful for Relatively Small Size of Data

 Directly Contain Data (as Part of Descriptor

Object)

 Constant: TBufC<6>

 Modifiable: TBuf<8>

6 H E L L O !

6 8 H E L L O !

Length

Length
Max Length

2/16/2012

31

Dynamic Descriptors (Heap Based)

 Can be Used for Strings

◦ That are Too Big to be Placed on Stack

◦ For Which Size is Not Known at

Compile Time

 Constant: HBufC

6 H E L L O !
0x34567
8

Heap

Dynamic Descriptors (Heap Based)

 Modifiable: RBuf

6 10 0x23456
7

H E L L O !Max

Lengt

h
Length

Heap

2/16/2012

32

String Literals

 Literals are Strings, Generally Used for

Printable Text in the Program

 Literals are of Type TLitC, TLitC8, TLitC16

 String Literals are Constructed using the

_LIT Macro

◦ _LIT(KText, “Hello World");

◦ Where KText is Name of String Literal (i.e.

variable name)

Collection Classes: Arrays

 RArray

◦ An Array of Fixed Length Objects

◦ Size of One Array Element can Not Exceed

64o Bytes

 RPointerArray

◦ An Array of Object Pointers

2/16/2012

33

Collection Classes: Arrays

 CArray

◦ Use Buffers to Store Data

◦ Flat CArray

 Store Entire Data in a Single Heap Cell

 Once Full, any Append Operation Requires a New

Heap Cell to be Allocated that is Large Enough to

Contain the Original and New Data

 Segmented CArray

 Store Data in Doubly Linked List of Smaller Segments

 Each Segment is a Separate Heap Cell of Fixed Size

Asynchronous Services

 All System Services are Provided through
Servers

 Servers Operate in their Own Processes

 Service Provider APIs Typically have
Asynchronous and Synchronous Versions of
their Functions

 Service Request Function Returns
Immediately, while the Request itself is
Processed in the Background.

 Relevant Processes are Notified when
Request is Complete

2/16/2012

34

Asynchronous Services and Active

Objects

 Symbian Allows Application Programs to

Create Threads

 Multiple Asynchronous Services can be

Accessed using Multiple Threads

 However, Symbian Recommendation is to

Use Active Objects where Possible, as an

Alternative Option

Active Object Framework

 Active Object Framework

◦ Active Objects

◦ Active Scheduler

 Active Object Framework is Used for

Event Driven Multitasking

 Active Scheduler Maintains a List of Active

Objects which have Made Request for an

Asynchronous Service

2/16/2012

35

Active Object

 Implement „Asynchronous Service

Requesting Objects‟ as an Active Object

 An Active Object:

◦ Requests an Asynchronous Service and

◦ Handles the Resulting Completion of Event

Sometime After the Request.

◦ May Ask to Cancel a Request

◦ Is Listed with Active Scheduler

Active Scheduler

 When Asynchronous Service Completes,

It Generates Events to Notify Active

Scheduler

 Active Scheduler

◦ Detects Service Completion Events

◦ Determines Associated Active Object

◦ Calls the Active Object to Handle the Event.

2/16/2012

36

Submitting an Asynchronous Request

 Each Active Object Can Only Have One
Outstanding Request

 If a Request has Already been Placed by an
Active Object, a New Request may Result in

◦ Panic

◦ Refuse

◦ Cancel Outstanding Request and Submit New
One

Active Object Event Handling

 Active Object Implements the Event Handling Function

 Active Object Event Handler is the Function for
Handling Completion of Asynchronous Call

 Active Object Handler is Not Pre-Empted

 Control Returns to the Active Scheduler When Event
Handler Returns

 If Multiple Requests are Completed, Control Returns to
the Scheduler, they are Handled Sequentially in Order of
their Priority

 Active Scheduler Calls the Event Handling Function of
Associated Object

2/16/2012

37

Active Object Structure: Key

Elements

 iStatus: Data Member Representing Request Status.

 R-Class Object: A Handle on the Asynchronous
Service Provider (usually an R-class object).

 Connection to the Asynchronous Service Provider.

 Function to Issue the Asynchronous Request

 RunL(): Handler Function to be Invoked by the Active
Scheduler when Request Completes

 Cancel(): Function to Cancel an Outstanding Request

Active Object Implementation
 Create a Class Derived from CActive

 Create Asynchronous Service Provider Handle (R-Classes)
as a Data Member in the Class

 Invoke Constructor of CActive, Specifying Object Priority

 Connect to the Service Provider in ConstructL() Method

 Invoke CActiveScheduler::Add() in ConstructL()

 Implement NewL() and NewLC()

 Implement Asynchronous Request Function that Calls the
Service, Specifying iStatus as the Argument.

 Call SetActive()

2/16/2012

38

Active Object Implementation
contd..

 Implement RunL() Method to Handle
Necessary Work Once the Request is
Complete

 Implement DoCancel() to Handle Request
Cancel Operation.

 Implement RunError() to Handle any Leaves
from RunL().

 Implement the Destructor to Call Cancel()
and close the Handle(s) on the Service
Provider(s).

Using Active Object

 Instantiate using NewL() or NewLC() as

Appropriate

 Call Start(), to Make the Initial Request

 To Cancel the Request Prior to

Completion, Call Cancel().

2/16/2012

39

Active Objects: CActive Structure
 class CActive : public CBase {

public:
IMPORT_C virtual ~CActive();
IMPORT_C void Cancel();
inline TBool IsActive() const;
inline TInt Priority() const;

protected:
IMPORT_C CActive(TInt aPriority);
IMPORT_C void SetActive();

// Implements cancellation of outstanding request. This function is called as part of the active object's
Cancel().

virtual void DoCancel() =0;
// Handles an active object's request completion event. A derived class must provide an implementation to

handle completed request. The function is called by active scheduler when a request completion event
occurs.

virtual void RunL() =0;

virtual TInt RunError(TInt aError); //Called by Active Scheduler if RunL() Leaves

public:
//Represents the status or error code returned by the asynchronous service provider.
TRequestStatus iStatus;

private:
TBool iActive;

};

Active Objects: Implemented CFileLoader

class CFileLoader : public CActive

{

public:

void Start();

private:

CFileLoader();

void ConstructL(const TDesC& aFileName);

void RunL();

TInt RunError(TInt aError);

void DoCancel();

private:

TFileName iFileName;

RFile iFile;

};

2/16/2012

40

ECOM

 ECOM is a Generic and Extensible Framework

by which Abstract Interfaces can be Defined and

their Implementations Identified, Loaded and

Managed.

 ECOM is A Mechanism to Extend Symbian OS

ECOM

 What ECOM Does?

◦ Identification: Identifies all the Concrete

Implementations of an Interface.

◦ Resolution: Allows the Client to Choose the

Implementation to be Used

◦ Instantiation: Instantiates an Instance of the

Concrete Class which Implements that

Interface

2/16/2012

41

ECOM (EPOC Component Object

Model)

 ECOM Architecture is Used Transparently by

Clients

 ECOM Server Manages Requests to

Instantiate Concrete Instances of an Interface.

 ECOM Server Maintains a Registry of All

Interface Implementations Installed on Device

ECOM Plug-in Interface

Characteristics
 Standard Definition Functions

◦ Abstract Class that Defines a Set of One or
More Pure Virtual Functions

◦ Concrete Classes Implement these Virtual
Functions

 1 or More Factory Functions

◦ Used to Allow Clients to Instantiate an
Interface Implementation Object

 Release Function

◦ Used to Delete / Release Plugin

2/16/2012

42

References

 Mobile computing : technology, applications, and service

creation by Asoke K. Talukder, Roopa R. Yavagal

 S60 Programming by Paul Coulton and Reuben Edwards

 Developing Software for Symbian OS by Steve Babin

 The Accredited Symbian Developer Primer by Mark

Jacobs and Jo Stichbury

 Developing Series 60 Applications: A Guide for Symbian

OS C++ Developers by Leigh Edwards

 http://www.symbian.com

 http://www.forum.nokia.com

http://www.symbian.com/
http://www.forum.nokia.com/

